张施令.模糊神经网络应用于巡检机器人路径规划及绝缘子视觉图像处理[J].电工技术,2020(23):4-8 |
模糊神经网络应用于巡检机器人路径规划及绝缘子视觉图像处理 |
|
|
DOI:10.19768/j.cnki.dgjs.2020.23.002 |
中文关键词: 变电站巡检机器人 红外成像仪 紫外成像仪 免疫蚁群算法 模糊神经网络 视觉图像 |
英文关键词: |
基金项目: |
|
摘要点击次数: 1779 |
全文下载次数: 0 |
中文摘要: |
目前变电站巡检机器人广泛应用于变电站巡检过程中,主要巡检高压电力设备绝缘子、均压环等外部配件。在巡检过程中,机器人配备红外成像仪、紫外成像仪存储高压电力设备光子分布图、温度分布图,建立设备红外与紫外图像数据库。一方面,机器人在巡检过程中应有效规避变电站较高电场强度区域,在巡检过程中应以最短距离遍历变电站典型高压电力设备,且机器人机械臂可有效进行图像多角度采集。另一方面,在图像采集过程中应实现机器人对设备绝缘子、均压环图像区域分割、聚焦和光子采集操作,且应用深度学习方法实现采集图片与原始图像库的自动匹配比较,判别高压电力设备运行状态进而发现潜伏性绝缘故障。其中最短低场强路径与遍历设备路线应用免疫蚁群算法自动实现,且图像数据库深度学习与自动匹配模块应用模糊神经网络实现。联合免疫蚁群算法与模糊神经网络应用于变电站巡检机器人路径规划及视觉图像后处理,对于变电站高压电力设备智能巡检具有一定理论和工程指导价值。 |
英文摘要: |
|
查看全文 查看/发表评论 下载PDF阅读器 |