针对人工提取电力负荷特征困难,传统电力负荷预测方法预测时间序列效果较差等问题,提出了利用门控循环单元 (GatedRecurrentUnit,GRU)神经网络预测电力负荷的方法.利用Python编程语言在 TensorFlow 框架下 搭建 GRU 神经网络,利用第九届电工大赛电力负荷数据集,将清洗好的数据输入搭建的神经网络进行训练.对比 GRU 神经网络模型和循环神经网络 (RecurrentNeuralNetwork,RNN)模型,得出 GRU 神经网络模型的效果优于 RNN 神经网络模型的结论. |