原继东,王志海.时间序列的表示与分类算法综述[J].计算机科学,2015,42(3):1-7
时间序列的表示与分类算法综述
Review of Time Series Representation and Classification Techniques
  
DOI:10.11896/j.issn.1002-137X.2015.03.001
中文关键词:  时间序列,时间序列分类,时间序列表示
英文关键词:Time series,Time series classification,Time series representation
基金项目:本文受北京市自然科学基金(4142042),中央高校基本科研基金(2014YJS032)资助
作者单位E-mail
原继东 北京交通大学计算机与信息技术学院 北京100044交通数据分析与挖掘北京市重点实验室 北京100044 12112078@bjtu.edu.cn 
王志海 北京交通大学计算机与信息技术学院 北京100044交通数据分析与挖掘北京市重点实验室 北京100044  
摘要点击次数: 7929
全文下载次数: 3359
中文摘要:
      时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内,依照给定的采样率,对某种潜在过程进行观测的结果。时间序列数据广泛地存在于商业、农业、气象、生物科学以及生态学等诸多领域,从时间序列中发现有用的知识已成为数据挖掘领域的研究热点之一。在时间序列表示方面,主要介绍了非数据适应性表示方法、数据适应性表示方法和基于模型的表示方法;针对时间序列的分类方法,着重介绍了基于时域相似性、形状相似性和变化相似性的分类算法,并对未来的研究方向进行了进一步的展望。
英文摘要:
      Time series is a set of random variables ordered in timestamp.It is often the observation of an underlying process,in which values are collected from uniformly spaced time instants,according to a given sampling rate.Since time series data exist widely in various application domains,such as finance,agriculture,meteorology,biological science,eco-logy and so on,discovering knowledge from time series has become one of the mainly research fields of data mining.In this paper,a comprehensive review on the existing time series representation and classification research was given.In the term of time series representation,three different categories named non-data adaptive,data adaptive and model based were summarized.A summary of several time series classification method,namely similarity in time,similarity in shape and similarity in change was also provided.
查看全文  查看/发表评论  下载PDF阅读器